Name: _____

Date: _____

What is the inverse of the function y = 2x + 3?

A.
$$x = \frac{1}{2}y - \frac{3}{2}$$
 B. $y = \frac{1}{2}x - \frac{3}{2}$

B.
$$y = \frac{1}{2}x - \frac{2}{5}$$

C.
$$y = 2x - 3$$

C.
$$y = 2x - 3$$
 D. $x = -2y - 3$

What is the domain of the function shown on the 2. graph below?

A.
$$\{-1, -2, -3, -4\}$$
 B. $\{-1, -2, -4, -5\}$

B.
$$\{-1, -2, -4, -5\}$$

C.
$$\{1, 2, 3, 4\}$$
 D. $\{1, 2, 4, 5\}$

3. What is the domain of the function

$$f(x) = 2x - 3$$

when the range is $\{-9, -3, 1\}$?

A.
$$\{-21, -9, -1\}$$
 B. $\{-2, 0, 6\}$

B.
$$\{-2, 0, 6\}$$

C.
$$\{-8, -2, 2\}$$
 D. $\{-3, 0, 2\}$

D.
$$\{-3, 0, 2\}$$

Which of the following functions of x has the apparent range of $\{y: y \le 0\}$? 4.

A.

B.

C.

D.

- What is the domain of $f(x) = \frac{x}{2x^2 5x 3}$?
 - A. $\{x | -\infty < x < \infty\}$ B. $\{x | x \neq 0\}$

 - C. $\{x | x \neq -\frac{1}{2}, x \neq 3\}$ D. $\{x | x \neq -3, x \neq \frac{1}{2}\}$
- What is the inverse of the function x + 2y + 3 = 0?
 - A. $y = -\frac{1}{2}x \frac{3}{2}$ B. y = -2x 3
 - C. 2y + x + 3 = 0 D. 2x y + 3 = 0

7. Which graph represents the inverse of $f(x) = \{(0, 1), (1, 4), (2, 3)\}$?

B.

C.

D.

8.

What is the domain of this function?

- A. $0 \le x \le 5$
- B. $0 \le x \le 8$
- C. $0 \le y \le 1$ D. $0 \le y \le 6$

- What is the domain of the function $f(x) = \sqrt{x^2 3x 10}$?

 - A. $-2 \le x \le 5$ B. $x \le -2$ or $x \ge 5$

 - C. $x \ge 5$ D. $x \ge -2$

10. Which graph represents the inverse of the equation $y = 3^{x}$?

- 11. What is the domain of $f(x) = -2x^3 + x^2 + 1$?
 - A. the set of all real numbers

B.
$$\{x \mid -3 < x < 2\}$$

C.
$$\{x \mid -2 < x < 3\}$$

12. A certain function is represented by g(x) = 4 - 3x. If the range of this function is $\{-5, 4, 7\}$, what is the domain of the function?

A.
$$\{15, -8, -17\}$$
 B. $\{3, 0, -1\}$

B.
$$\{3, 0, -1\}$$

C.
$$\{-3, 0, 1\}$$

C.
$$\{-3,0,1\}$$
 D. $\{-11,-8,-17\}$

13. Which of the following functions of x has an appearance range of $\{-1, 0, 2\}$?

A.

В.

C.

D.

14. The following is the graph of the equation $y = x^2$, in which y is a function of x.

Which of these describes the range of the function?

- A. x is all real numbers
- B. y is all real numbers
- C. $y \ge 0$
- D. $x \ge 0$

15. The inverse function of $\{(2,6), (-3,4), (7,-5)\}$ is

A.
$$\{(-2,6), (3,4), (-7,-5)\}$$

B.
$$\{(2,-6), (-3,-4), (7,5)\}$$

C.
$$\{(6,2), (4,-3), (-5,7)\}$$

D.
$$\{(-6, -2), (-4, 3), (5, -7)\}$$

16. The inverse of the function y = 2x - 5 is

A.
$$y = \frac{1}{2}(x+5)$$

A.
$$y = \frac{1}{2}(x+5)$$
 B. $y = \frac{1}{2}(x-5)$

C.
$$y = 2x + 5$$
 D. $y = 5 - 2x$

D.
$$y = 5 - 2x$$

A function is defined by the equation y = 2x + 3. Which equation defines the inverse of this function?

A.
$$y = \frac{1}{2}x + \frac{1}{3}$$
 B. $x = \frac{1}{2}y - \frac{3}{2}$

B.
$$x = \frac{1}{2}y - \frac{3}{2}$$

C.
$$y = -2x - 3$$

C.
$$y = -2x - 3$$
 D. $y = \frac{1}{2}x - \frac{3}{2}$

What is the range of the function $f(x) = x^2 + 3$ if the domain is $\{-3, 0, 3\}$?

B.
$$\{-6, 3, 12\}$$

- 19. Given $f(x) = -3x^2 + 5$, what is the range of the function?
 - A. all real numbers less than or equal to 5
 - B. all integers less than or equal to 5
 - C. all nonnegative real numbers
 - D. all nonnegative integers

- 20. Which equation defines a function whose inverse is *not* a function?
 - A. y = |x|
- B. y = -x
- C. y = 3x + 2
- D. $y = 2^x$