Practice evaluating piecewise functions:

For each function, evaluate at the integers from -5 to 5 :
$\mathrm{x}=\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$
1.

$$
f(x)= \begin{cases}2 x+3, & x<0 \\ 3-x, & x \geq 0\end{cases}
$$

2.

$$
f(x)= \begin{cases}x+6, & x \leq-4 \\ 2 x-4, & x>-4\end{cases}
$$

3.

$$
f(x)= \begin{cases}\sqrt{4+x}, & x<0 \\ \sqrt{4-x}, & x \geq 0\end{cases}
$$

4.

$$
f(x)= \begin{cases}1-(x-1)^{2}, & x \leq 2 \\ \sqrt{x-2}, & x>2\end{cases}
$$

5.

$$
f(x)= \begin{cases}x+3, & x \leq 0 \\ 3, & 0<x \leq 2 \\ 2 x-1, & x>2\end{cases}
$$

6.

$$
g(x)=\left\{\begin{array}{l}
x+5, \quad x \leq-3 \\
-2,-3<x<1 \\
5 x-4, \quad x \geq 1
\end{array}\right.
$$

7. A "probability mass function" gives the probability that a random process gives a result equal to x. This one is defined as: $p(x)=\left\{\begin{array}{c}0.30, x=0 \\ 0.35, x=1 \\ 0.25, x=2 \\ 0.10, x=3 \\ 0, \text { otherwise }\end{array}\right.$.
a. What is the probability that $x=0$?
b. What is the probability that $x=1$?
c. What is the probability that $x=4$?
d. What is the probability that $x \leq 2$?
8. A function is defined as $f(x)=\left\{\begin{array}{c}0, x<0 \\ 3 x, 0 \leq x \leq 10 . \\ k, x>10\end{array}\right.$.

Show the work needed to find the value of k that makes this continuous.
9. A function is defined as $g(t)=\left\{\begin{array}{c}t+1, t<2 \\ a t+5, t \geq 2\end{array}\right.$

Show the work needed to find the value of a that makes this continuous.
10. A function is defined as $h(x)=\left\{\begin{array}{c}3 x+b, x<-3 \\ -2 x-7, x \geq-3\end{array}\right.$

Show the work needed to find the value of b that makes this continuous.

